dbGuide – Protocol reference for designed oligos

Upon clicking the "Design" button, a text file will be downloaded onto your computer with the following format:

```
# oligos for ligation
EGFR-Guide-1-F CACC G TCTTAATTCCTTGATAGCGA
EGFR-Guide-1-R AAAC TCGCTATCAAGGAATTAAGA C
EGFR-Guide-2-F CACC G GAGGATGTTCAATAACTGTG
EGFR-Guide-2-R AAAC CACAGTTATTGAACATCCTC C
# oligos for in vitro transcription
T7_Rev_Long
AAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC
T7_Fwd_Amp
                 GGATCCTAATACGACTCACTATAG
T7_Rev_Amp
                 AAAAAAGCACCGACTCGG
EGFR-Guide-1-IVT-F
                         GGATCCTAATACGACTCACTATAG TCTTAATTCCTTGATAGCGA GTTTTAGAGCTAGAA
EGFR-Guide-2-IVT-F
                         GGATCCTAATACGACTCACTATAG GAGGATGTTCAATAACTGTG GTTTTAGAGCTAGAA
# target site information
EGFR-Guide-1
                 TCTTAATTCCTTGATAGCGA
                                          hg38;chr7:55174759-55174781
EGFR-Guide-2
                 GAGGATGTTCAATAACTGTG
                                          hg38;chr7:55142353-55142375
```

For each guide selected, the oligonucleotide sequences are listed for either using the guides in a plasmid format or using them in a way to generate a PCR template for in vitro transcription (IVT). The final listing below gives the guide RNA spacer sequences along with the genomic location of the target site.

Cloning of guide RNAs into plasmids

Addgene#	Description	Cas9	Selection marker	Enzyme	
<u>52962</u>	Lenti-CRISPR-V2	Yes	Puromycin	BsmBl	
<u>98291</u>	Lenti-CRISPR-V2-Hygromycin	Yes	Hygromycin	BsmBl	
<u>98292</u>	Lenti-CRISPR-V2-Neomycin	Yes	Neomycin	BsmBl	
<u>98293</u>	Lenti-CRISPR-V2-Blasticidin	Yes	Blasticidin	BsmBl	
<u>82416</u>	Lenti-CRISPR-V2-2A-GFP	Yes	GFP	BsmBl	
<u>99154</u>	Lenti-CRISPR-V2-2A-mCherry	Yes	mCherry	BsmBl	
<u>48138</u>	pX458 - Cas9-2A-GFP	Yes	GFP	BbsI	
<u>52963</u>	Lenti-Guide-Puro	No	Puromycin	BsmBl	
<u>64046</u>	pSB700 - Lenti-Guide-mCerulean	No	mCerulean	BsmBl	

 Table 1. List of some compatible sgRNA backbones to clone for SpCas9

 Table 2. List of necessary reagents

Reagent	Vendor	Catalog #	Alternatives		
T4 Polynucleotide kinase (PNK)	NEB	M0201S			
Quick/rapid T4 ligase	NEB	M2200S	Enzymatics (
BsmBI-v2	NEB	R0739S	Thermo Fisher		
BbsI-HF*	NEB	R3539S	Thermo Fisher		
Gel extraction kit	Zymo	D4007	Qiagen (
NEB Stbl	NEB	C3040H	Invitrogen (

*for pX458

Step 1: Choose backbone plasmid and digest/gel extract

Table 1 lists some backbones present in the Addgene collection that are compatible with the oligos designed.

Step 2: Digestion and gel extraction of plasmid backbone

Digest plasmid with appropriate enzyme listed next to the backbone plasmid. Digest for 1-2hrs and run on a 1% agarose gel and cut out of gel. A recommended amount of plasmid to digest is 1 to 2 ug. Table 3 lists a digestion reaction with BsmBI.

Table 3. Plasmid digestion

Component	Volume	
1 – 2 ug of plasmid	х	
Buffer 3.1	5 uL	
BsmBI-v2 enzyme	1 uL	
Water	44 - x	
Total	50 uL	

55C for 1-2hrs

Step 3: Annealing and phosphorylation of oligos

For each guide RNA to clone, anneal and phosphorylate the "F" and "R" oligos for subsequent ligation. First, re-suspend oligos in TE buffer to a final concentration of 100 uM. Use the following reaction mixture:

Table 4. Annealing and phosphorylation of oligos

Component	Volume	
100 uM F oligo	1 uL	
100 uM R oligo	1 uL	
T4 PNK	0.5 uL	
10X T4 PNK buffer	1 uL	
Water	6.5 uL	

Protocol: 37C for 30mins; 95C for 5mins; Ramp down 0.1C/s to 25C

Step 4: Ligation of annealed product into digested backbone

First, dilute the annealed oligo by 1:150 with water or TE buffer. Ligate annealed product into digested backbone using the following reaction:

Component	Volume		
10X buffer	1 uL		
Quick T4 ligase	0.5 uL		
Annealed oligo (1:150)	1 uL		
Digested backbone (25-50ng)	x uL		
Water	7.5-x uL		
Total	10 uL		
Incubate at room temperature for Emine			

Incubate at room temperature for 5mins

Step 5: Transformation of competent cells

Take 1 uL of ligation reaction and transform NEB Stable/Invitrogen Stbl3 cells and follow manufacturer's transformation protocol.

It is also recommended to do a transformation of the digested backbone (with no insert) to validate digest was complete and no colonies are seen the next day. It is also recommended to plate different dilutions of your recovered cells as you may see different transformation efficiencies with each batch of digested plasmid.

In vitro transcription of guide RNAs for Cas9 RNP production

Protocols for the production of *in vitro* transcribed guide RNAs by run-off transcription can be found here:

https://www.protocols.io/view/In-vitro-transcription-of-guide-RNAs-dwr7d5

https://www.protocols.io/view/in-vitro-transcription-of-guide-rnas-and-5-triphos-bfxfjpjn